Deep Learning
深度學習
深度學習
[DL-1] 學習建議:建議先優先完成 [DL-1A] 與 [DL-1B] 兩個課程模組,以快速建立對深度學習整體流程的基本認識與概念架構。接著閱讀 [DL-1C] 中的論文,以掌握醫學影像領域深度學習的概念與應用概覽。如有興趣,則可進一步研讀 [DL-1D],加強 PyTorch 在一般影像上的實作與練習。
[DL-1A]
Introduction to Deep Learning with PyTorch・DataCamp・4 Hours Course
Learn the power of deep learning in PyTorch. Build your first neural network, adjust hyperparameters, and tackle classification and regression problems.
[DL-1B]
Intermediate Deep Learning with PyTorch・DataCamp・4 Hours Course
Learn about fundamental deep learning architectures such as CNNs, RNNs, LSTMs, and GRUs for modeling image and sequential data.
[DL-1C]
Paper Reading
Deep Learning: A Primer for Radiologists・Gabriel Chartrand, Phillip M. Cheng, Eugene Vorontsov, Michal Drozdzal, Simon Turcotte, Christopher J. Pal, Samuel Kadoury, An Tang・Radio Graphics (2017)
Deep Learning: An Update for Radiologists・Phillip M. Cheng, Emmanuel Montagnon, Rikiya Yamashita, Ian Pan, Alexandre Cadrin-Chênevert, Francisco Perdigón Romero, Gabriel Chartrand, Samuel Kadoury, An Tang・Radio Graphics (2021)
[DL-1D]
Deep Learning for Images with PyTorch・DataCamp・4 Hours Course
Apply PyTorch to images and use deep learning models for object detection with bounding boxes and image segmentation generation.
[DL-2] 學習建議:在 [DL-2A] 與 [DL-2B] 課程模組中,採用「閱讀 → 實作 → 閱讀 → 實作」的迭代方式進行學習,逐步掌握深度學習開發流程中的各個環節細節,並理解演算法的原理與應用實例。搭配 [DL-2-ShortVideos-1]、[DL-2-ShortVideos-2]、[DL-2-Visual-1] 提供圖像化的簡明說明,有助於快速建立關於深度學習的初步架構。
[DL-2A]
Biomedical Image Analysis in Python・DataCamp・4 Hours Course (Intermediate)
In this introductory course, you'll learn the fundamentals of image analysis using NumPy, SciPy, and Matplotlib. You'll navigate through a whole-body CT scan, segment a cardiac MRI time series, and determine whether Alzheimer’s disease changes brain structure. Even if you have never worked with images before, you will finish the course with a solid toolkit for entering this dynamic field.
[DL-2B]
Detecting COVID-19 with Chest X-Ray using PyTorch・Guided Project・2 Hours Course (Intermediate)
Create custom Dataset and DataLoader in PyTorch and Train a ResNet-18 model in PyTorch to perform Image Classification.
[DL-2-ShortVideos-1]
Neural Networks / Deep Learning・
StatQuest・[Playlist]
[DL-2-ShortVideos-2]
Neural Networks・
3Blue1Brown
[DL-2-Visual-1]
Brief Visual Introduction to Deep Learning
Neural Networks from Scratch・Allison George・2021
CNN Explainer・Jay Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred Hohman, Minsuk Kahng, and Polo Chau
playground.tensorflow.org・Daniel Smilkov and Shan Carter
[DL-3] 學習建議:建議先完成 [DL-3A],以建立大型語言模型(Large Language Models, LLM)的應用與原理概念。接著透過 [DL-3B] 學習 Transformer 架構及其 Python 實作。最後於 [DL-3C] 中,運用 PyTorch 進行 Transformer 模型訓練,系統性掌握 LLM 核心技術。
[DL-3A]
Large Language Models (LLMs) Concepts・DataCamp・2 Hours Course (Beginner)
Discover the full potential of LLMs with our conceptual course covering LLM applications, training methodologies, ethical considerations, and latest research.
[DL-3B]
Introduction to LLMs in Python・DataCamp・ 4 Hours Course (Intermediate)
Learn the nuts and bolts of LLMs and the revolutionary transformer architecture they are based on!
[DL-3C]
Transformer Models with PyTorch・DataCamp・2 Hours Course (Advanced)
What makes LLMs tick? Discover how transformers revolutionized text modeling and kickstarted the generative AI boom.
[DL-4] 學習建議:建議以 [DL-4A] 作為核心教材,系統性涵蓋深度學習理論與實作,讀者應盡可能完整閱讀並搭配程式實作,以建立紮實的理解與應用能力。若希望進一步強化理論基礎,建議閱讀 [DL-4B],以深入掌握深度學習背後的數學與統計原理。對數學理論研究發展有興趣者,可進一步研讀 [DL-4C]。若希望輕鬆認識深度學習的發展歷程,[DL-4D] 提供易讀的敘事性介紹,可作為延伸閱讀。
[DL-4A]
Understanding Deep Learning ・
Simon J.D. Prince
本教材兼具理論與實作,內容涵蓋最新深度學習架構,系統性介紹深度學習核心概念、數學原理與實作技術。
[DL-4B]
Deep Learning Foundations and Concepts ・
Chris Bishop andHugh Bishop
以較深入的角度探討深度學習背後的數學原理核心概念,協助理解模型如何從資料中學習,並建立更紮實的理論基礎。
[DL-4C]
The Modern Mathematics of Deep Learning・
Julius Berner, Philipp Grohs, Gitta Kutyniok and Philipp Petersen
本論文探討深度學習在泛化、優化與結構理論上的數學機制與進展。
[DL-4D]
Why Machines Learn - The Elegant Math Behind Modern AI ・
Anil Ananthaswamy
運用基本數學觀念,說明機器學習與深度學習的基本工作原理,協助學習者從數學邏輯出發,理解 AI 系統的設計基礎。
[DL-5A]
MIT Introduction to Deep Learning | 6.S191・MIT・2025 Edition
[DL-5B]
初探深度學習中的數學與演算法・顏佐榕 教授 (中央研究院・統計科學研究所)
本課程從數學推導以及演算法的角度,簡介深度學習與網路架構。並以醫學影像分類為範例,說明深度學習的應用。課程影片:
[DL-5C]
Other online courses
How Deep Neural Networks Work · feeCodeCamp.org · [03:50:56]
Machine Learning Crash Course · Google
[DL-5D]
Working with Hugging Face・DataCamp・4 hours Course
Navigate and use the extensive repository of models and datasets available on the Hugging Face Hub.
TBD